A Monolithic Three-Axis Accelerometer with Wafer- Level Package by CMOS MEMS Process
نویسندگان
چکیده
This paper presents a monolithic three-axis accelerometer with wafer-level package by CMOS MEMS process. The compositions of the microstructure are selected from CMOS layers in order to suppress the in-plane and out-of-plane bending deflection caused by the residual stresses in multiple layers. A switched-capacitor sensing circuit with a trimming mechanism is used to amplify the capacitive signal, and decrease the output dc offset voltage to ensure the desired output voltage swing. The CMOS MEMS wafer is capped with a silicon wafer using a polymer-based material. The measured sensitivities with and without a wafer-level package range from 113 mV/G to 124 mV/G for the in-plane (x-axis, y-axis) accelerometer, and from 50 mV/G to 53 mV/G for the z-axis accelerometer, respectively.
منابع مشابه
Design Rules for Wafer Level Packaging of MEMS, CMOS-MEMS Integration, and Smart Systems using Anodic Bonding and Lateral Feedthroughs
The advantages of wafer level packaging (WLP) are widely recognized across a range of applications MEMS, IC’s Smart systems, CMOS-MEMS integration, System on Chip (SoC), Package in Package (PiP), Package on Package (PoP ) etc. Key benefits include true chip-size package, reduced cost of interconnects (by creating at wafer-level rather than back-end chip-scale packaging), and minimising test and...
متن کاملA Wafer Level Vacuum Encapsulated Capacitive Accelerometer Fabricated in an Unmodified Commercial MEMS Process
We present the design and fabrication of a single axis low noise accelerometer in an unmodified commercial MicroElectroMechanical Systems (MEMS) process. The new microfabrication process, MEMS Integrated Design for Inertial Sensors (MIDIS), introduced by Teledyne DALSA Inc. allows wafer level vacuum encapsulation at 10 milliTorr which provides a high Quality factor and reduces noise interferenc...
متن کاملA Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass
This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology...
متن کاملMonolithic multiple axis accelerometer design in standard CMOS
Using a single maskless postprocessing step we have developed an accelerometer in a standard commercial CMOS process capable of a sensitive axis parallel or perpendicular to the die surface. Our postprocess is realized using xenon difluoride (XeF2) as a bulk etchant. The combination of this etchant and the standard CMOS process allows realization of cantilevers with piezoresistive sensors in al...
متن کاملSputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer
This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputter...
متن کامل